
RAIRO-Theor. Inf. Appl. 58 (2024) 16 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051/ita/2024013 www.rairo-ita.org

ON THE GENERATION OF DISCRETE FIGURES

WITH CONNECTIVITY CONSTRAINTS

Hugo Tremblay1,* and Julien Vernay2

Abstract. This paper addresses a generalization of polyominoes called (a, b)-connected discrete fig-
ures, where a and b represent the connectivity of the foreground (i.e. black pixels) and background
(i.e. white pixels), respectively. Formally, a finite set of pixels P is (a, b)-connected if P is a-connected
and P is b-connected. By adapting a combinatorial structure enumeration algorithm by J. L. Martin
and employing breadth-first search ordering on the pixels of the figures, we sequentially generate all
(a, b)-connected discrete figures up to size n = 18, utilizing minimal storage space. This paper presents
an extended version of the research presented at the 2022 GASCom conference.

Mathematics Subject Classification. 05A15, 05B50.

Received December 13, 2022. Accepted July 11, 2024.

1. Introduction

Since their introduction by S. Golomb in [1], Polyominoes, that is finite sets of connected pixels, have proven
to be of particular interest with many applications ranging from crystallography [2], robotics [3] and signal
processing [4], among others. They appear in the literature under various monikers: animals [5, 6], clusters [7],
polyominoes and pseudo-polyominoes [8] and self-avoiding polygons [9]. However we may call them, the problem
of enumerating such discrete figures remains at the core of several research interests. This is not without reason
as the efficient enumeration of polyominoes is still an unsolved problem.

In this paper, we concern ourselves with a generalization of polyominoes called (a, b)-connected discrete
figures, where a and b respectively denotes the connectivity of the foreground (i.e. black pixels) and background
(i.e. white pixels). Such objects were first introduced in [10] in order to study a digital image transformation
problem. Formally, a discrete figure P ⊂ Z2 is (a, b)-connected if and only if P is a-connected and P is b-
connected. We refer to 4-connected (resp. 8-connected) figures as (4, 0)-connected (resp. (8, 0)-connected) and
we denote Sa,b the set of (a, b)-connected discrete figures. It is easy to deduce that Sa,4 ⊂ Sa,8 ⊂ Sa,0 and
S4,b ⊂ S8,b for a ∈ {4, 8} and b ∈ {0, 4, 8}. Formal definitions are given in Section 2.

Some families Sa,b have been considered in the literature: S4,0 and S8,0 are respectively polyominoes and
pseudo-polyominoes [8]. Also, (4, 4)-connected figures are frequently called self-avoiding polygons due to the
fact that they can be generated by a self-avoiding walk on the grid Z2 [9]. To the best of our knowledge, (4, 8),
(8, 4) and (8, 8)-connected figures have never been previously studied.

Keywords and phrases: Combinatorics, digital geometry, polyominoes, exhaustive generation, algorithmics, parallelization.

1 Department of Computer Science and Mathematics, Université du Québec à Chicoutimi, Canada.
2 Asobo Studio, France.

* Corresponding author: hugo tremblay2@uqac.ca

© The authors. Published by EDP Sciences, 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ita/2024013
https://www.rairo-ita.org
mailto:hugo\protect _tremblay2@uqac.ca
https://creativecommons.org/licenses/by/4.0

2 H. TREMBLAY AND J. VERNAY

In [6], J. L. Martin introduces an algorithm for the enumeration of lattice graph structures by considering a
canonical ordering on the neighbourhood of each vertex. This paper presents a modified version of this algorithm
by considering the connectivity of both the foreground and the background of a polyomino in order to generate
(a, b)-connected figures. Remark that a constant amortized time algorithm is given in [11], and further expanded
in [12] for the generation of (4, 4)-connected polyominoes. However, our method does not make any assumptions
about the type of connectivity of the figure and generates each figure without duplicates, thus using minimal
memory space. Also, the computing time required to generate all figures of size n is proportional to the total
number of figures, not to n itself. To the best of our knowledge, this paper constitutes the first enumeration of
(4, 8), (8, 4) and (8, 8)-connected discrete figures. The enumeration of (8, 0)-connected figures up to size 18 is
also a novel result. Finally, Martin’s original algorithm was presented as a flowchart diagram and implemented
in Fortran. We provide a more modern C++ implementation and a suitable pseudocode description.

2. Definitions and notations

Consider the discrete grid Z2. The pixel (or cell) p(x, y) is the unit square [x, y] × [x + 1, y + 1], where
(x, y) is a point of the discrete grid. Pixels are thus identified to Z2. Two pixels p and q are 4-connected (or
4-adjacent) if they have an edge in common and 8-connected (or 8-adjacent) if they have an edge or a vertex
in common. The 4-neighbourhood of p is the set of all pixels 4-adjacent to p and is denoted by N4(p). We also
define N∗

4 (p) = N4(p) ∪ {p}. N8 and N∗
8 are defined in a similar manner.

A a-connected (discrete) path P is a sequence of pairwise a-connected pixels, that is

P = p1, p2, . . . , pn

where pi+1 ∈ Na(p). We then say that P is a path from p1 to pn of length n. Moreover, P is closed if p1 = pn.
A set of pixels S is said to be locally a-connected if there exists in S a a-connected path between any pair of
pixels of S. A (a, b)-connected polyomino (or (a, b)-connected figure) P is a finite set that is locally a-connected
and such that the complement P (the infinite set of pixels not in P) is locally b-connected. The pixels of P are
called the black pixels (or foreground) and those of P are called the white pixels (or background).

Let G4 (respectively G8) be the graph whose vertices are the set Z2 of pixels and where there is an edge
between p and q if and only if they are 4-adjacent (respectively, 8-adjacent). Any polyomino is thus identified by
a finite connected subgraph of G4 (or G8). A (a, b)-connected polyomino is identified to both a finite connected
subgraph of Ga and an infinite connected subgraph of Gb. From a practical perspective, one cannot allow for
Gb to be infinite in order to implement any sort of generation algorithm. To avoid this problem, we enclose the
(a, b)-connected polyomino P in a suitably large rectangle such as [x− 1, x′ − 1]× [y + 2, y′ + 2] where x, x′, y
and y′ are respectively the minimal x-coordinate of Ga, the maximal x-coordinate of Ga, minimal y-coordinate
of Ga and maximal y-coordinate of Ga. Figure 1 gives an example of a (a, b)-connected polyomino and its
associated graphs.

3. Generating (a, b)-connected figures

We now present a modified version of J. L. Martin’s enumeration algorithm for generating (a, b)-connected
discrete figures [6]. It proceeds by iteratively adding pixels to a figure until a prescribed size is attained. At
each step, we ensure that both a and b connectivities for black and white pixels are maintained. This is done
in constant time for black pixels since it suffices to select the next pixel among the neighbourhood of the pixels
of P . The same approach also yields constant time methods for checking white connectivity for the cases (4, 4),
(4, 8) and (8, 4). However, checking white-connectivity for (8, 8)-figures is linear in the size of the figure since
paths may intersect without having any pixel in common. These results are detailed in the following sections.

3.1. Black-connectivity

Maintaining black-connectivity can be done in constant-time by selecting pixels among a set of neighbours
a-connected to the figure. This set is updated at each step by removing the pixel that was just added before

ON THE GENERATION OF DISCRETE FIGURES WITH CONNECTIVITY CONSTRAINTS 3

Figure 1. A (8, 4)-connected polyomino P of size 8 and its corresponding graphs.

Figure 2. Adding a new pixel to a figure P adds, in the worst case, at most 4 white neighbours.
This ensures the number of white pixels is linear in the size of P .

adding its a-neighbours to the set, if they are not already present. Because there is at most a neighbours added
and that the choice of the pixel to add is done in constant time, the time complexity is O(1), provided we choose
a suitable data structure to store candidates. The data structure is further discussed in Section 4.2.

3.2. White-connectivity

Checking whether adding a new pixel p to a figure breaks white-connectivity is more involved. We simplify
the process by first checking whether the white neighbourhood of p (i.e. the white pixels 8-adjacent to p, also
denoted NW (p)) is b-connected. If it is indeed the case, then the white connectivity is maintained since the
pixels of NW (p) are connected to the rest of the white pixels of Z2. Otherwise, we need to consider whether the
figure has a hole and thus is not b-connected.

In order to check whether the white pixels are connected, we start by checking whether NW (p) is a connected
subgraph of Gb. This has cost O(1). Then, if NW (p) is not b-connected, we check whether B is connected, where
B is the set of white pixels that are adjacent to a black pixel of the figure. This has cost O(n) since there are at
most 4(n+ 1) white neighbours for a figure of size n (this follows from induction on the size of the figure and
the fact that adding a new pixel adds at most 4 new white neighbours, see Fig. 2).

By restraining the connectivity to the cases (4, 4), (4, 8) and (8, 4), it is sufficient to only check local connec-
tivity. When adding a new pixel p to a figure, we consider the neighbourhood NW (p) consisting of the 8-adjacent
neighbours of p. We then have one of the three cases depicted in Figure 3.

For case (a),NW (p) is a connected subgraph, meaning any white path which would potentially be disconnected
by p becoming black remains connected via the local white neighbours of p.

For case (b), NW (p) was not b-connected before the addition of p. This can only be the case for a white
pixel diagonally adjacent to two black pixels, for white connectivity b = 4 (else, p would have linked all white
neighbours). Since the previous figure is white-connected, there must exist paths between these white neighbours
which do not include p, meaning these paths still exist and are not disconnected by the addition of p.

4 H. TREMBLAY AND J. VERNAY

Figure 3. The three cases occurring while adding a new pixel p to the figure: (a) Local
connectivity is preserved. Consequently, paths are redirected locally. (b) If local connectivity
was already broken beforehand, then paths already exist between white components. (c) Local
connectivity is broken by adding the pixel p. In this case, paths cannot be redirected since they
would have to cross the figure.

Figure 4. For (8, 8)-connected figures, it is not sufficient to study N(p) in order to determine
the connectivity of the figure obtained from the addition of p.

For case (c), the addition of p disconnects the white pixels of the figure P , which partitions the white pixels
into two sets: white pixels interior to P and white pixels exterior to P . For connectivities other than (8, 8), any
path which connects an interior white pixel to an exterior white pixel must cross the figure, meaning the figure
is not b-connected anymore.

Consequently, ensuring the (4, 4), (4, 8) and (8, 4)-connectivity is done by checking the previous three cases
for the neighbourhood of p, yielding a constant-time method for adding new pixels. The check implementation is
explained in Section 4.4. However, this approach does not work for (8, 8)-connectivity since it is possible for two
paths to cross without intersecting on a pixel. Figure 4 illustrates this particular case. Thus, a graph traversal
is required for (8, 8)-connectivity.

3.3. Algorithm for generating (a, b)-connected polyominoes

Before presenting our algorithm for generating (a, b)-connected polyominoes, we offer a brief overview of J.L.
Martin’s algorithm. First, remark that adding pixels one at a time defines an ordering on the pixels of P . Since
this ordering is not unique (e.g. there are four ways of constructing the 2 by 2 square polyomino, starting at the
bottom left pixel), this process may produce duplicate figures. The idea behind Martin’s algorithm is to instead
explicitly define a unique ordering on the pixels of P . Consequently, a figure is constructed by considering the
so-called canonical ordering of its pixels. By defining a first pixel p (e.g. the left-most pixel on the bottom row)
and a visiting order of the neighbours of p (e.g. anticlockwise starting with the pixel to the right of p), the
canonical ordering of the pixels of a figure corresponds to the breadth-first traversal of the graph G4 (or G8).
An example is given in Figure 5.

Martin’s algorithm uses this ordering to define “add” and “remove” operations on the current set of pixels.
Figures are then constructed in a specific order in relation to this canonical ordering. Additionally, it specifies

ON THE GENERATION OF DISCRETE FIGURES WITH CONNECTIVITY CONSTRAINTS 5

Figure 5. Example of canonical ordering using the left-most point on the bottom row as a
starting pixel along with the cyclic counterclockwise ordering right-up-left-down.

“prohibited” elements as to not generate an already visited figure. It is worth noting that Martin did not provide
pseudocode, implementation details or data structures for his algorithm, relying instead on a simple flowchart
description of the procedure.

We now propose a new algorithm for generating (a, b)-connected polyominoes by re-imagining Martin’s algo-
rithm as a tree traversal where nodes contain polyominoes and by considering arbitrary connectivity constraints
such as white connectivity. To be more precise, for each figure P of size n, its parents are the valid figures of size
n− 1 obtained by removing a pixel from P . We define the unique canonical parent of P as the figure obtained
by removing from P the last added pixel in the canonical ordering. Conversely, a canonical child of P is a figure
whose canonical parent is P . With this relationship, the set of all figures can be viewed as a tree structure,
called canonical tree, whose root is the sole figure of size 1. Our algorithm visits this tree using a depth-first
traversal, generating new figures one at a time while keeping track of “prohibited” pixels so as not to generate
non-canonical children figures.

Formally, our algorithm requires an ordered set of pixels, called candidate pixels, and a state for the current
figure. The candidate pixels are all pixels chosen for the current figure together with all neighbour pixels which
may either be “free” (i.e. may be added to the current figure to generate a new figure) or “prohibited” (i.e.
adding them would generate a previously generated figure).

At first, the set of candidates is initialized by choosing a so-called origin pixel serving as the root of the
tree. This defines the starting figure as the sole figure of size 1. We then define the three primitive operations
firstChild(), nextSibling() and parent(), detailed below.

� firstChild(): adds the neighbours of the last chosen pixel as free candidates. Then, the next free pixel
p among the set of candidates is added to the current figure.

� nextSibling(): takes the next free pixel p among the set of candidates. If p does not exist, there are no
more siblings. Else, the last added pixel is removed and marked as prohibited. Then, p is added.

� parent(): reverts the last chosen candidate state as “free” before removing all pixels added by the cor-
responding firstChild() operation. Finally, all prohibited pixels after the last chosen candidate in the
ordering are marked as “free” candidates. In doing so, pixels are marked as prohibited only during the
previous sub-tree.

After applying either firstChild() or nextSibling(), a new possible figure is obtained. The various con-
nectivity constraints are then checked (e.g. white connectivity). If they are satisfied, then the new figure is
added. Otherwise, nextSibling() is called, effectively skipping this invalid figure and its sub-tree.

While adding candidates, care must be taken to not include pixels which would contradict the starting point
criteria. For instance, if the starting point is the left-most pixel on the bottom row, pixels on rows below the
origin pixel cannot be candidates, nor pixels to the left of the origin pixel. These contradictory pixels can be
easily dealt with by marking them as “prohibited” during the initialization. This way, they stay prohibited
during the entire generation procedure.

The pseudocode, data structure and complexity analysis for our algorithm are discussed in Section 4. Figure 6
depicts the result of applying our algorithm for (4, b)-connected figures of size n ≤ 4 where b ∈ {0, 4, 8}.

6 H. TREMBLAY AND J. VERNAY

Figure 6. All 28 figures with n ≤ 4 and black connectivity a = 4, generated by our algorithm.
The number on each pixel corresponds to the pixel’s position in the canonical ordering as in
Figure 5. Each figure’s canonical parent is the previous figure of size n − 1. Grey pixels are
prohibited; using them would result in an already visited figure of size n + 1. For instance,
adding P11’s top-left pixel would give P4.

4. Implementation

S. Redner proposed in 1982 a FORTRAN implementation of Martin’s algorithm for the generation of 4-
connected figures without considering white connectivity [7]. We propose a thoroughly documented and modern
C++ implementation of our algorithm, freely available on GitHub [13].

4.1. Grid, pixels and directions

First, we bound the infinite 2D plane containing the figures, as mentioned in Section 2. We choose Nmax as an
arbitrary limit for the size of the figure. Since the starting point is defined to be the leftmost lowest pixel, the
figure only grows in the three directions north, east and west, up to a distance of Nmax− 1 pixels. This ensures
all generated figures fit on a grid of (2 · Nmax− 1)× (Nmax) pixels, with the starting point in the middle of the
first row. In our implementation, we add a margin of two pixels in each direction so the figures are generated in a
grid of Width = 2 · Nmax+3 and Height = Nmax+4. This way, each white pixel has access to its neighbourhood,
regardless of connectivity.

The grid is considered one-dimensional, that is each pixel p(x, y) is mapped to the integer
pos = x+ y × Width, pos ∈ [0, Width× Height[, which denotes the position of the pixel in the grid. This allows

ON THE GENERATION OF DISCRETE FIGURES WITH CONNECTIVITY CONSTRAINTS 7

Figure 7. Grid representation for Nmax = 4. The pixel labelled 0 is the starting point at
position PosOrigin = 27. Grey pixels are prohibited from the start: adding them would break
the starting point criteria. The black rectangle represents the area where the figure is generated.

the use of a pre-allocated array for storing the pixels. Accessing a particular pixel is done in O(1) and neigh-
bouring pixels are accessed by simply adding an offset: right, up, left and down neighbours of pixel at pos have
index pos+ 1, pos+ Width, pos− 1 and pos− Height respectively, using the convention that the bottom-left
pixel is p(0, 0).

Taking into account the two pixels of margin, the starting pixel, which is in the middle of the first row, is
p(⌊Width÷ 2⌋, 2) and has position PosOrigin = ⌊Width÷ 2⌋+ 2 · Width. In order to respect the starting point
criteria, one must not use the pixels to the left or on lower rows as the starting point. In the grid representation,
these forbidden pixels are those such that pos < PosOrigin. See Figure 7 for a visual representation of the grid.

4.2. Data structures and state

In order to represent the ordered set of candidates, we use an array of integers candidates (the candi-
dates’ positions) along with an integer count (the number of candidates) and a grid of Width × Height bits
gridCandidates (whether a pixel is already in the set). The array candidates is pre-allocated, as the total
number of candidates is bounded by 5 · Nmax (the worst-case being a diagonal figure in G8, where each chosen
pixel adds 5 new candidates as in Fig. 2). When adding a pixel to the set, we verify that gridCandidates[pos]
is zero, in which case, pos is assigned to candidates[count], then count is incremented. Removing pixels is
always done from last to first: for pixel at pos = candidates[count− 1], we reset the bit gridCandidates[pos]
to zero, and decrement count. Consequently, both adding and removing pixels have complexity O(1).

We represent the current depth of iteration as an integer level, which denotes the canonical ordering of the
pixel we are currently modifying (starting at index 0), giving figures of size n = level+1. The current figure is
stored in an array of Nmax integers chosenIndices, containing the index of each chosen candidate in candidates.
This ensures the position of the last chosen pixel is candidates[chosenIndices[level]]. Additionally, since
white connectivity checks require fast access to whether a pixel at pos is chosen or not, we also maintain an
array of bits gridChosen (whether a pixel is chosen) indexed by pos.

Finally, we need to recall which candidates where added by the function firstChild() so that the function
parent() may remove them. This is done with an array of Nmax integers candidatesCounts, containing the
values of count after the level-th firstChild() operation. During the parent() operation, the candidates to
be removed are candidates[i] for i ∈ [candidatesCounts[level], count[. Then, candidatesCounts[level] is
assigned back to count, and level is decremented.

In our implementation, we do not explicitly mark whether a candidate is free or prohibited. This state can
be retrieved from the values of chosenIndices. For each candidate at candidates[idx], its state is:

� “chosen” if chosenIndices[k] == idx with k ≤ level,
� “free” if idx > chosenIndices[level], and

8 H. TREMBLAY AND J. VERNAY

� “prohibited” if chosenIndices[k] < idx < chosenIndices[k + 1] with k < level. The pixel stays
prohibited until we call parent() when level = k + 1.

With this representation, the next “free” pixel exists if chosenIndices[level] + 1 < count, in which case its
position is candidates[chosenIndices[level] + 1]. A pixel is automatically marked as “prohibited” whenever
a pixel further in the candidates ordering is “chosen”. The pixel reverts to the “free” state whenever all pixels
after it in the candidates ordering are “un-chosen”.

4.3. Pseudocode and complexity

Algorithm 1 firstChild() primitive

idx← chosenIndices[level]
for pos ∈ Na(candidates[idx]) do ▷ Add last chosen pixel’s neighbours

if gridCandidates[pos] = 0 then
gridCandidates[pos]← 1
candidates[count]← pos

count← count+ 1
end if

end for
if idx+ 1 ≥ count then ▷ If no candidates are available

return FAIL

end if
level← level+ 1
candidatesCounts[level]← count

chosenIndices[level]← idx+ 1
gridChosen[candidates[idx+ 1]]← 1
return SUCCESS

Algorithm 2 nextSibling() primitive

idx← chosenIndices[level]
if idx+ 1 < count then

gridChosen[candidates[idx]]← 0
gridChosen[candidates[idx+ 1]← 1
chosenIndices[level]← idx+ 1
return SUCCESS

else
return FAIL

end if

Algorithm 3 parent() primitive

gridChosen[candidates[chosenIndices[level]]]← 0
level← level− 1
for idx ∈ [candidatesCounts[level]; count[do

gridCandidates[candidates[idx]]← 0
end for
count← candidatesCounts[level]

ON THE GENERATION OF DISCRETE FIGURES WITH CONNECTIVITY CONSTRAINTS 9

Algorithm 4 Algorithm to generate (a, b)-connected figures

candidates[0]← PosOrigin

count← 1
candidatesCounts[0]← 1
for pos ∈ [0; PosOrigin] do ▷ Prevent adding contradictory pixels

gridCandidates[pos]← 1
end for
chosenIndices[0]← 0
gridChosen[PosOrigin]← 1
level← 0

while not done do ▷ Main loop (A)
while Current figure valid do ▷ Go deeper loop (B)

Yield current figure
if level ≥ Nmax− 1 then

break
end if
if firstChild() fails then

break
end if

end while
while nextSibling() fails do ▷ Next sub-tree loop (C)

if level = 0 then ▷ Termination condition
return DONE

end if
parent()

end while
end while

Our method for generating (a, b)-connected figures is detailed in Algorithm 4. It relies on the three visit-
ing procedures firstChild(), nextSibling() and parent(), defined respectively in Algorithms 1, 2 and 3.
nextSibling() may fail if the last chosen pixel is the last of the candidates, meaning there is no free candidate
available. firstChild() may fail too, either if current figure has maximum size, or if the last chosen pixel is
the last candidate and its neighbours are already candidates.

In order to analyze the complexity of our algorithm, we start with Algorithms 1, 2 and 3. Since arrays are
contiguous and they only make use of simple integer arithmetic, they are accessed in constant-time, making
each individual instruction of complexity O(1). The loop inside firstChild() visits the neighbours of the last
added pixel, of which there are a, with a ∈ {4, 8}, (i.e. the black connectivity). In particular, the number of
iteration does not depend on the size of the figures, so this loop has complexity O(1). The loop inside parent()
removes candidates added inside the loop of the last firstChild(). There are at most a candidates added by
firstChild(), so there are at most a candidates removed by parent(), meaning the loop inside parent() has
complexity O(1). Therefore, Algorithms 1, 2 and 3 each have complexity O(1).

To further our complexity analysis, we define disjoint classes of figures and their total number. The union of
these classes gives the set of figures of size n ≥ Nmax, with black connectivity a, without considering the white
connectivity constraint.

� #NonLeaf: the number of valid figures which have canonical children left to visit.
� #Leaf: the number of valid figures which do not have canonical children left to visit: these include the
figures with maximum size n = Nmax.

10 H. TREMBLAY AND J. VERNAY

Table 1. Algorithm 4 time complexity, for all types of connectivity.

Connectivity Total complexity Amortized complexity
for all figures for one figure

(4, 0), (8, 0) O(#Valid) O(1)

(4, 4), (4, 8), (8, 4) O(#Valid+#Rejected) O (1)

(8,8) O(n× (#Valid+#Rejected)) O (n)

� #Valid: the sum of #NonLeaf and #Leaf.
� #Rejected: the number of invalid figures, where their canonical parents are valid. These are the figures
rejected by the validity check. This is zero when we do not check white connectivity.

� #Skipped: the number of invalid figures, where their canonical parents are themselves invalid. These
figures are irrelevant to our algorithm: They are not explored since their invalid canonical parent is
already rejected.

Algorithm 4 consists of a main loop (A), itself containing two loops (B) and (C) comprised of the validity check
procedure and the visit primitives procedure respectively. We now count the total number of these operations:

� firstChild() is called once per each valid figure: #Valid times. It succeeds #NonLeaf times and fails
#Leaf times.

� parent(): Algorithm 4 terminates when level = 0 is reached for a second time. level is only incremented
on successful firstChild() calls and only decremented on parent(). Consequently, parent() is called
as many times as successful firstChild() calls, that is #NonLeaf times.

� nextSibling() is called once after each exit of loop (B), and once after each call to parent() (#NonLeaf
times). Loop (B) is exited after either firstChild() fails (#Leaf times) or a figure is rejected (#Rejected
times).

� Validity check is done once per each valid figure and each rejected figure, that is #Valid+#Rejected
times.

All operations are called at most #Valid +#Rejected times. The complexity of the visit primitives pro-
cedure is O(1), and the validity check procedure has complexity O(1) or O(n), as mentioned in Section 3.2.
The total time complexity of Algorithm 4 for generating all (a, b)-connected figures is then the complexity of
the validity check procedure times #Valid +#Rejected. The amortized time complexity for generating the
next figure is the total complexity divided by the number #Valid of generated figures. Remark that, since

#Rejected ≤ #Valid, we have O
(
n+ #Rejected

#Valid

)
= O(1) and O

(
n+ n#Rejected

#Valid

)
= O(n). The time com-

plexity for the different connectivity are summed up in Table 1, where connectivity (a, 0) means that white
connectivity check is disabled.

The memory usage has complexity O(n2) because we store two-dimensional grids. This is not an issue in
practice since, in our implementation, the various states defined in Section 4.2 consume, in total, at most
1344 bytes for generating figures with n ≤ 20. Remark that it would require at most 11416 bytes for sizes
n ≤ 100 (the worst case in our implementation being (8, 8)-connected figures). Table 2 gives the values of
#Valid and #Rejected with Nmax = 13, and the memory size required by our algorithm.

4.4. Efficient white-connectivity check

The white-connectivity check is applied to all valid and rejected figures, so its performance is paramount for
fast generation of figures. As discussed in Section 3.2, validity check for connectivity (4, 4), (4, 8) and (8, 4) is
done by only considering the white neighbours of the last chosen candidate NW (p). In the following discussion,
we call A,B,C,D, F,G,H, I the eight neighbours of p, as shown in Figure 8. We refer to them as “white” if they

ON THE GENERATION OF DISCRETE FIGURES WITH CONNECTIVITY CONSTRAINTS 11

Table 2. Values of #Valid and #Rejected for figures of size n ≤ 13, along with the memory
size required by the algorithm.

Connectivity #Valid #Rejected #Rejected
#Valid (%) Memory consumption

(4, 0) 2 595 167 0 0 344 bytes
(4, 8) 2 577 792 4679 0.18% 664 bytes
(4, 4) 2 377 414 69 730 2.93% 664 bytes
(8, 0) 1 996 505 920 0 0 344 bytes
(8, 8) 1 996 369 432 24 770 <0.01% 920 bytes
(8, 4) 1 645 507 929 28 350 917 1.72% 664 bytes

Figure 8. (a) Names of the neighbours. (b) Example where a (4,8)-connected figure would
report broken white-connectivity due to lack of diagonal handling. (c) Example where a (8,4)-
connected figure would report broken but it was already previously broken locally.

are not chosen in the figure. We count the number of white components c(a,b) in NW (p), relying on Boolean
arithmetics instead of graph algorithms. By considering the neighbours of p as Booleans with TRUE = 1 if chosen
and FALSE = 0 if not, white connectivity is preserved if c(a,b) ≤ 1.

First, for connectivity (4, 4), the number of white connected sets can be found as the number of adjacent
pairs (p1, p2) in the loop F → C → B → · · · → I → F where p1 is black and p2 is white.

c(4,4) = (F AND C) + (C AND B) + (B AND A) + (A AND D)

+ (D AND G) + (G AND H) + (H AND I) + (I AND F)
(4.1)

For connectivity (4, 8), the same computation can be reused, but the count has false positives when one of
{A,C,G, I} is black and its two adjacent pixels are white. Figure 8b shows such a false positive example with
pixels A,B,D. These cases must be decremented from the count.

c(4,8) = c(4,4) − (A AND B AND D)− (C AND B AND F)

− (G AND D AND H)− (I AND F AND H)
(4.2)

For connectivity (8, 4), we reuse the computation for (4, 4), but there may be two white components legit-
imately, when one of {A,C,G, I} is white and its two adjacent pixels are black. In this situation, the white
component in the corner is still connected with an external path to the rest of the white neighbours, as shown
in Figure 8c : A and the center p were both white before p being chosen, but they are not connected locally.
These cases must be removed from c.

c(8,4) = c(4,4) − (A AND B AND D)− (C AND B AND F)

− (G AND D AND H)− (I AND F AND H)
(4.3)

12 H. TREMBLAY AND J. VERNAY

Table 3. Performance result of our multi-threaded implementation of Algorithm 4.

Parameters Figures count Total time Figures per second

(4, 0), Nmax = 20 30 988 922 366 14.2 s 2167.7 millions
(4, 8), Nmax = 20 30 334 771 986 38.9 s 779.9 millions
(4, 4), Nmax = 20 24 681 869 833 33.4 s 738.9 millions
(8, 0), Nmax = 15 87 776 030 494 38.6 s 2270.4 millions
(8, 8), Nmax = 15 87 767 553 560 321.0 s 273.4 millions
(8, 4), Nmax = 15 69 192 311 923 83.1 s 832.6 millions

Finally, we represent those eight Booleans using a single integer by using one bit per Boolean. This integer
is used as an index in a precomputed lookup table of 256 entries. Whenever we want to check if choosing a
candidate would break white-connectivity, we simply access this table instead of doing the computation for
every enumerated figure.

4.5. Parallelization of the algorithm

Algorithm 4 is equivalent to a depth-first traversal of the imaginary “canonical tree” of figures, until reaching
depth Nmax. All children figures in this tree have a single parent, so that figures of size n only have one ancestor
of a given size n′ < n. Due to this property, our algorithm is easily separated to perform independent tasks.

First, we choose a small n′. We generate all figures of size n ≤ n′ and we store our algorithm’s state for each
figure of size n = n′. After this short single-threaded pass, we get multiple copies of our state, which can be
resumed independently without limiting depth to n′. We then create one task per state copy, which starts the
iteration again, limiting the depth to Nmax and terminating when we find a figure of size n ≤ n′. At the end, we
aggregate the result of all these passes to get the figures’ count.

In practice, we choose n′ = 8 or n′ = 6, respectively for black connectivities a = 4 and a = 8, to get a few
thousand independent tasks. As stated at the end of Section 4.3, our algorithm’s state requires about one kilobyte
of memory space, so storing a few thousand copies consume a few megabytes of memory. This parallelization
could theoretically run on multiple computers. However, we do not have access to the required infrastructure.
Instead, our implementation uses a C++17 thread-pool library made by Barak Shoshany [14].

4.6. Results and performances

We implemented Algorithm 4 in both single-thread and multi-thread versions for all types of connectivity.
For a given size n, we measured both the number of generated figures as well as the execution time. We used
a laptop with Windows 11 and an Intel® Core i7-13700HX (24 logical cores). The results are in Table 3. We
distinguish three speed categories:

� Connectivity (4, 0) and (8, 0) (without white connectivity checks) are the fastest, with about 2200 million
figures generated per second. Extra speed was achieved by not maintaining gridChosen, which is only
necessary for white connectivity check.

� Connectivity (4, 4), (4, 8) and (4, 4) allows for the generation of about 800 million figures per second. The
extra time is due to maintaining gridChosen and the lookup access for white connectivity check.

� Connectivity (8, 8) is the worse, due to the O(n) validity check.

We implemented Algorithm 4 in C++. The results for the number of figures of each connectivity type are in
Tables 4 and 5. Also, Figure 9 presents minimal examples explaining the difference in cardinality of the various
families Sa,b.

ON THE GENERATION OF DISCRETE FIGURES WITH CONNECTIVITY CONSTRAINTS 13

Table 4. Number of (a, b)-connected figures. The results for (4, 0) and (4, 4) respectively cor-
respond to OEIS sequence #A001168 for the number of fixed 4-connected polyominoes and
OEIS sequence #A006724 for the number of self-avoiding polygons.

n (4, 0)-connected (4, 8)-connected (4, 4)-connected

1 1 1 1
2 2 2 2
3 6 6 6
4 19 19 19
5 63 63 63
6 216 216 216
7 760 760 756
8 2725 2724 2684
9 9910 9898 9638
10 36 446 36 358 34 930
11 135 268 134 744 127 560
12 505 861 503 065 468 837
13 1 903 890 1 889 936 1 732 702
14 7 204 874 7 138 286 6 434 322
15 27 394 666 27 086 832 23 993 874
16 104 592 937 103 202 581 89 805 691
17 400 795 844 394 625 770 337 237 337
18 1 540 820 542 1 513 810 138 1 270 123 530
19 5 940 738 676 5 823 764 372 4 796 310 672
20 22 964 779 660 22 462 566 215 18 155 586 993

Total 30 988 922 366 30 334 771 986 24 681 869 833
Time 14.2 s 38.9 s 33.4 s
Speed 2167.7 M s−1 779.9 M s−1 738.9 M s−1

5. Conclusion

This paper deals with (a, b)-connected discrete figures, that is finite sets of a-connected pixels such that the
background is b-connected. By modifying Martin’s enumeration algorithm, we generate all such figures as well
as their number up to size 18 for most families Sa,b. We also discuss proofs for the complexity of checking black
and white connectivity at each step.

This work constitutes a first step towards understanding this type of combinatorial objects and opens up
several new interesting research avenues. From a theoretical point of view, it would be interesting to find
generating series for (a, b)-connected figures. We could also hope to find asymptotics bounds for this type
of figures. For instance, methods developed in [15] could be useful in providing additional insight into (a, b)-
connected figures.

Our algorithm is easily applicable to regular tilings (hexagonal, triangular, rectangular) in Rn. For instance,
Algorithm 4 is valid for the 3D cases, provided a suitable connectivity test for white pixels is defined.

Also, since they originated from a digital picture transformation problem in [10], the work done in this paper
could help solve the following conjecture: Given two (4, 4)-connected digital images I and I ′ of size n, there
exists a sequence of O(n2) 8-adjacent pixel interchanges that transforms I into I ′. A possible starting point for
tackling this problem would be to study the density of (a, b)-connected discrete figures and its correlation to
the preceding transformation. Recall that the density of a simple graph G on n vertices, and by extension a
discrete figure, effectively measures how close G is to the complete graph Kn. It is relatively straightforward to
show that the density tends to zero as n grows.

14 H. TREMBLAY AND J. VERNAY

Table 5. Number of (a, b)-connected figures. The result for (8, 0) corresponds to OEIS sequence
#A006770 for the number of fixed 8-connected polyominoes, extended here to n = 18 for the
first time. Generating (8, 8)-connected figures of size n ≥ 18 would have taken too much time
on our computer.

n (8, 0)-connected (8, 8)-connected (8, 4)-connected

1 1 1 1
2 4 4 4
3 20 20 20
4 110 110 109
5 638 638 622
6 3832 3832 3664
7 23 592 23 592 22 094
8 147 941 147 940 135 609
9 940 982 940 966 843 941
10 6 053 180 6 053 002 5 310 754
11 39 299 408 39 297 724 33 724 862
12 257 105 146 257 090 547 215 793 158
13 1 692 931 066 1 692 811 056 1 389 673 091
14 11 208 974 860 11 208 021 976 8 998 648 488
15 74 570 549 714 74 563 162 152 58 548 155 506
16 498 174 818 986 498 118 512 909 382 526 638 033
17 3 340 366 308 393 3 339 942 522 834 2 508 473 632 910
18 22 471 158 811 164 N/A 16 503 616 943 998

Total 26 397 475 969 037 3 925 828 589 303 19 463 809 526 864
Time 3 h 7 min 53.9 s 4 h 8 min 58.7 s 6 h 41 min 26.5 s
Speed 2341.5 M s−1 262.8 M s−1 808.1 M s−1

Figure 9. Examples of discrete figures explaining the difference in number between the families
Sa,b.

The random generation of (a, b)-connected polyominoes is also an interesting question. A Monte-Carlo version
of Martin’s algorithm was proposed by P. M. Lam in 1986 [5] where each generated figure has a non zero
probability of being discarded. We briefly explored a generalization of this algorithm by randomly selecting
the next generated figure among a set of valid candidates. Even though these methods do not produce figures
uniformly at random, this is a worthwhile research avenue to pursue.

From an experimental point of view, it would be interesting to refine our implementation, namely by using
a more powerful computer or by using a bigger network of computers for more efficient parallelization. Exper-
imenting with various segmentation values or probabilities would also surely lead to interesting results, both
for the random and the exhaustive generation of discrete figures. In particular, the computation of the number
of (8, 8)-connected discrete figures of size 18 could be easily and quickly obtained by using a more powerful
computer.

ON THE GENERATION OF DISCRETE FIGURES WITH CONNECTIVITY CONSTRAINTS 15

References

[1] S.W. Golomb, Polyominoes. Charles Scribners’ Sons (1965).

[2] T. Sunada, Topological Crystallography. Springer (2013).

[3] M. Kobilarov, M. Desbrun, J. Marsden and G. Sukhatme, A discrete geometric optimal control framework for
systems with Symmetries, in Proceedings of Robotics: Science and Systems, Atlanta, GA, USA (2007).

[4] Z.-M. Du, F.-Y. Ye, H. Shi and G.-P. Zhu, A fast recovery method of 2D geometric compressed sensing signal.
Circuits Syst. Signal Process. 34 (2015) 1711–1724.

[5] P.M. Lam, On Monte Carlo generation and study of anisotropy of lattice animals. J. Phys. A: Math. Gen. 19
(1986) L155.

[6] J.L. Martin, Phase Transitions and Critical Phenomena, Vol. 97. Academic Press, London and New York (1974)
97–112.

[7] S. Redner, A Fortran program for cluster enumeration. J. Stat. Phys. 29 (1982) 309–315.

[8] S.W. Golomb, Polyominoes: Puzzles, Patterns, Problems, and Packings. Princeton University Press (1994).

[9] I. Jensen and A.J. Guttmann., Self-avoiding polygons on the square lattice. J. Phys. A: Math. Gen. 32 (1999) 4867.

[10] P. Bose, V. Dujmovic, F. Hurtado and P. Morin, Connectivity-preserving transformations of binary images. Comput.
Vis. Image Understand. 113 (2009) 1027–1038.

[11] P. Massazza, Hole-free partially directed animals, in Developments in Language Theory, edited by P. Hofman and
M. Skrzypczak. Springer International Publishing, Cham (2019) 221–233.

[12] V. Dorigatti and P. Massazza, Partially directed animals with a bounded number of holes, in Language and
Automata Theory and Applications, edited by A. Leporati, C. Mart́ın-Vide, D. Shapira and C. Zandron. Springer
International Publishing, Cham (2021) 16–28.

[13] J. Vernay, Github repository: discrete-figures (2023).

[14] B. Shoshany, A c++17 thread pool for high-performance scientific computing. (2021).

[15] P. Flajolet and R. Sedgewick, Analytic Combinatorics, 1st edn. Cambridge University Press, USA (2009).

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to publish
this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal
donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	On the Generation of Discrete Figureswith connectivity constraints
	1 Introduction
	2 Definitions and notations
	3 Generating (a,b)-connected figures
	3.1 Black-connectivity
	3.2 White-connectivity
	3.3 Algorithm for generating (a,b)-connected polyominoes

	4 Implementation
	4.1 Grid, pixels and directions
	4.2 Data structures and state
	4.3 Pseudocode and complexity
	4.4 Efficient white-connectivity check
	4.5 Parallelization of the algorithm
	4.6 Results and performances

	5 Conclusion

	References

